Search results

1 – 4 of 4
Article
Publication date: 5 May 2021

Fei Li, Yulin Yang, Laizhou Song and Lifen Liang

The purpose of this paper is to elucidate the tribology behavior of polytetrafluoroethylene (PTFE) incorporated with three types of nickel–phosphorus (Ni-P) particles (i.e. low…

Abstract

Purpose

The purpose of this paper is to elucidate the tribology behavior of polytetrafluoroethylene (PTFE) incorporated with three types of nickel–phosphorus (Ni-P) particles (i.e. low phosphorus [LP], medium phosphorus [MP] and high phosphorus [HP]) under dry sliding condition.

Design/methodology/approach

Ni-HP, Ni-MP and Ni-LP particles fabricated via an electroless plating process were incorporated into PTFE matrix with different additions to prepare Ni-P/PTFE composites (Ni-LP/PTFE, Ni-MP/PTFE and Ni-HP/PTFE). The tribology tests for these samples were carried out on a reciprocating ball-on-disc tribometer. The thermal stabilities, mechanical and tribological properties, morphologies and components of aforesaid Ni-P/PTFE composites were analyzed.

Findings

The marvelous effect of Ni-P incorporation on the simultaneous reduction in friction and wear of PTFE was corroborated.

Originality/value

Compared with that of pristine PTFE sample, the reduction on friction with a value of 27% and the reduction in wear about 94% for Ni-HP/PTFE composite is validated, which is probably related to the increased crystallinity and hardness due to the presence of Ni-P particles.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 December 2022

Hui Zhao, Yuanyuan Ge and Weihan Wang

This study aims to improve the offshore wind farm (OWF) site selection evaluation index system and establishes a decision-making model for OWF site selection. It is expected to…

Abstract

Purpose

This study aims to improve the offshore wind farm (OWF) site selection evaluation index system and establishes a decision-making model for OWF site selection. It is expected to provide helpful references for the progress of offshore wind power.

Design/methodology/approach

Firstly, this paper establishes an evaluation criteria system for OWF site selection, considering six criteria (wind resource, environment, economic, technical, social and risk) and related subcriteria. Then, the Criteria Importance Though Intercrieria Correlation (CRITIC) method is introduced to figure out the weights of evaluation indexes. In addition, the cumulative prospect theory and technique for order preference by similarity to an ideal solution (CPT-TOPSIS) method are employed to construct the OWF site selection decision-making model. Finally, taking the OWF site selection in China as an example, the effectiveness and robustness of the framework are verified by sensitivity analysis and comparative analysis.

Findings

This study establishes the OWF site selection evaluation system and constructs a decision-making model under the spherical fuzzy environment. A case of China is employed to verify the effectiveness and feasibility of the model.

Originality/value

In this paper, a new decision-making model is proposed for the first time, considering the ambiguity and uncertainty of information and the risk attitudes of decision-makers (DMs) in the decision-making process.

Details

Kybernetes, vol. 53 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 April 2022

Xinchao Zhang, Huanxia Zhang, Danni Pan, Wen Wu, Hui Ma, Jianda Cao and Jia Xu

This paper aims to determine whether application of graphene layers to cuprammonium filaments affords the latter with excellent mechanical properties and improves their electrical…

70

Abstract

Purpose

This paper aims to determine whether application of graphene layers to cuprammonium filaments affords the latter with excellent mechanical properties and improves their electrical properties. At the same time, a circuit model was established to explore the conductive mechanism of the filament. The actual model is used to verify the correctness of the model.

Design/methodology/approach

The cuprammonium filaments were desizing, the graphene oxide layer-by-layer sizing and reduction integration process by a continuous sizing machine. The electrical properties of mono- and multifilaments in the static condition, as well as the dynamic–mechanical properties of multifilaments, were analysed, and the related conductive mechanism of the filaments was deduced.

Findings

Cuprammonium filaments coated with graphene layers showed good electrical conductivity, and their volume resistance decreased to 4.35 O·cm with increasing number of graphene coats. The X-ray diffraction and thermogravimetric analysis results showed that the graphene layer treatment changed the crystallinity of the copperammonia filaments and improved the thermal stability of the filaments. In the dynamic case, filament resistance was calculated using the equivalent resistance model, and the fitting difference observed was small. This result confirmed the high fit of this circuit model.

Originality/value

Up to the knowledge from literature review, there are no reports on theoretical research on the relation between the electro-mechanical property and structure of conductive filaments.

Details

Pigment & Resin Technology, vol. 51 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 July 2021

Yufei Chen, Hui Zhao, Yulong Liu and Hongyue CHU

Bismaleimide (BMI) is a kind of thermosetting resin and its application is usually limited by low toughness. In this paper, two kinds of reinforcement intercalator…

Abstract

Purpose

Bismaleimide (BMI) is a kind of thermosetting resin and its application is usually limited by low toughness. In this paper, two kinds of reinforcement intercalator amino-terminated polyoxypropylene (POP) and octadecyl trimethyl ammonium chloride (OTAC) were designed and synthesized to toughen BMI resin and the toughening effect was compared and analyzed. The purpose of this paper is to toughen BMI resin and analyze the toughening effect of two reinforcements intercalator amino-terminated polyoxypropylene (POP) and octadecyl trimethyl ammonium chloride (OTAC).

Design/methodology/approach

Sodium-based montmorillonite (Na-MMT) was modified by POP and OTAC, and the ion-exchange reaction obtained organic montmorillonite (POP-MMT and OTAC-MMT). The polymer matrix (MBAE) was synthesized, in which 4,4’-diamino diphenyl methane BMI was used as the monomer and 3,3’-diallyl bisphenol A and bisphenol A diallyl ether were used as active diluents. And then, POP-MMT/MBAE and OTAC-MMT/MBAE composites were prepared using MBAE as matrix and POP-MMT or OTAC-MMT as reinforcement. The Fourier-transform infrared, X-ray diffraction and scanning electron microscope (SEM) of the filler and microstructure and mechanical properties of the composite were characterized to the better reinforcement.

Findings

POP-MMT and OTAC-MMT enhanced BMI-cured products’ toughness by generating microcracks in the polymer to absorb more fracture energy. Meanwhile, POP-MMT and OTAC-MMT were the main stress components and the enhancement of the interface interaction was beneficial to transfer the external force from the matrix to the reinforcement and improved the mechanical properties of the composite. Furthermore, with the intercalation rate increasing, the compatibility of the two phases was increased and the performance of MBAE was also elevated.

Research limitations/implications

BMI is generally used as aerospace structural materials, functional materials, impregnating paint and other fields. However, high crosslinking density leads to moulding material’s brittleness and limits a wider range of applications. Therefore, it has become an urgent priority to explore and improve the mechanical properties of BMI resin.

Originality/value

POP and OTAC have successfully intercalated Na-MMT layers to get POP-MMT and OTAC-MMT, and the interplanar crystal spacing and the intercalation rate were calculated, respectively. The results were corresponding with the SEM images of POP-MMT and OTAC-MMT. After that, the morphology of composites illustrated the compatibility was related to the intercalation rate. According to the mechanism of modified MMT toughening epoxy resin, when they were dispersed uniformly in the matrix, the composite’s mechanical properties had been significantly improved. Additionally, OTAC-MMT with a higher intercalation rate had better compatibility and interfacial force with the matrix, so that the mechanical properties of OTAC-MMT/MBAE were the best.

Details

Pigment & Resin Technology, vol. 51 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 4 of 4